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Abstract. The spin structure of the matrix element for the pseudoscalar meson production processes in
nucleon-nucleon collisions is established in the collinear kinematical regime in terms of 3 independent scalar
amplitudes. This result is valid for any reaction mechanism and for any energy of the colliding and the
produced particles. The complete experiment for the full reconstruction of all 3 complex amplitudes must
contain two different classes of polarization experiments. The polarization transfer coefficients can be used
to determine the moduli of all 3 amplitudes, whereas the spin correlation coefficients for p + p collisions
are sensitive to the relative phases of different amplitudes.

PACS. 13.88.+e Polarization in interactions and scattering – 14.20.Dh Protons and neutrons

1 Introduction

Collinear kinematics is attractive. Because in this regime,
for example, the unitarity condition for the elastic scat-
tering results in the optical theorem, through which the
imaginary part of the forward elastic amplitude can be
related to the total cross-section for any energy. The con-
servation of the total helicity [1], being the general prop-
erty of the collinear regime, simplifies the spin structure
of the matrix element for any hadronic process as well as
the polarization phenomena essentially.

The analysis of the spin structure and the polarization
effects is controlled by the presence of a single physical
kinematical direction for the collinear processes. There-
fore, it is impossible to use here the results of the general
analysis of the polarization phenomena for binary reac-
tions. Because the essential ingredient of the general anal-
ysis is the existence of a scattering plane (which is pro-
duced by the various three-momenta in the initial and fi-
nal states) and a definite coordinate system. The absence
of the scattering plane for the collinear regime results in
an axial symmetry which must be taken into account in
introducing an adequate polarization formalism. There-
fore collinear formalism must be developed independently
and differently from that of ref. [2], because a continu-
ous extrapolation from the general case to the collinear
kinematics cannot be done in the framework of the above-
mentioned general formalism. The number of independent
collinear amplitudes is smaller than the one for the general
case, which is the typical indication of noncontinuity.

It is clear that the polarization effects must be sim-
plified essentially in the case of the axial symmetry. For
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example, all the one-spin T -odd observables must be zero
for the collinear regime [3]. Let us also note that at high
energies, the absolute values of the cross-sections are max-
imal in the collinear regime.

In this work we consider some special processes of
pseudoscalar meson production in pp collisions, p + p →
P +B+p, where B is a baryon with spin parity JP = 1

2

+,
and P is a pseudoscalar meson with JP = 0−. There are
several reasons for considering such processes [4,5]. Firstly,
the nonbinary processes 1 + 2 → 3 + 4 + 5 (where 1, 2,
3, 4, 5 denote hadrons) are especially interesting because
the spin structure of the corresponding matrix elements
is more complicated than the one for the binary processes
1 + 2 → 3 + 4. So the most appropriate way to introduce
the necessary generalization is to consider the simplest
kinematical conditions, which evidently are the collinear
ones.

Furthermore, it is the simplest processes of meson pro-
duction in nucleon-nucleon collisons:

p + p → π0 + p + p ,

→ η(η′) + p + p ,

→ K+ + Λ(Σ) + p ,

→ D̄ + Λc + p . (1)

Note that the theoretical study of all these processes is
very timely and appropriate due to the presence of many
interesting physical questions, which can be solved with
the help of these processes. Therefore these processes are
at the center of experimental activity in different proton
facilities (which operate at different energies), meson fac-
tories, SATURNE [6–9], DISTO [10], COSY [11–13], CEL-
SIUS [14–16]. But general analysis of the spin structure of
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the matrix elements of these processes is not performed
up to now in a model-independent way.

Therefore in this paper we analyze the spin structure
of processes p + p → B + P + p in collinear regime, where
there is a nontrivial, but simple enough spin structure, and
this structure can be established in a model-independent
form (independently of the details of the reaction mecha-
nism). The possibility to find an adequate parametrization
of collinear matrix element stimulates a discussion of an-
other typical polarization problem, namely the problem
of the “complete experiment”. It will be the first attempt
to consider this important problem for these nonbinary pr
processes.

2 Parametrization of spin structure

The P -invariance of the strong interactions and the con-
servation of total helicity, valid for the collinear regime,
implies that any process p + p → P + B + p is character-
ized by a set of 3 independent-helicity transitons:

p + p → B + P + p ,

+ + → + 0 + ,

+− → + 0− ,

→ − 0+ , (2)

where ± denote the helicities of the baryons in the initial
and final states being ± 1

2 .
The simplest way to parametrize the spin structure

of the matrix element in the most general form is to use
the formalism of 2-component spinors in the CMS. Differ-
ent equivalent parametrizations of spin structure for the
collinear matrix can be introduced. We choose as start-
ing point for our analysis of polarization phenomena the
following construction for the general collinear matrix el-
ement:

M = g1(χ+
2 χ1)(χ+

4 σ · kχ3)

+g2(χ+
2 σ · kχ1)(χ+

4 χ3)

+ig3(χ+
2 σaχ1)[χ+

4 (σ × k)aχ3] , (3)

where χ1 and χ2 are the 2-component spinors of colliding
protons, χ3 is the 2-component spinor of produced baryon
B, χ4 is the 2-component spinor of final proton, k is the
unit vector along the direction of the proton beam, and
g1, g2, g3 are 3 independent collinear amplitudes. Note,
that generally these amplitudes are complex functions of
3 possible independent kinematical variables which exist
for 1 + 2 → 3 + 4 + 5 processes in the collinear regime.
One can use as independent variables the following three
energies: initial beam energy E, and the energies of the
produced baryon B and the pseudoscalar meson P (note
that these 3 variables fix all possible orientations of 3 final
three-momenta, relative to each other).

Equation (3) corresponds to the so-called t-channel
representation of the collinear spin structure, whose spe-
cial form (namely, the “organization” of the order of 2-
component spinors for all 4 baryons which are present in
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Fig. 1. Graphical representations of t-channel parametriza-
tions of the spin structure of the matrix element for the pro-
cesses p + p → B + P + p.
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Fig. 2. Graphical representations of s-channel parametriza-
tions of the spin structure of the matrix element for the pro-
cesses p + p → B + P + p.

the considered process, see fig. 1, is most suitable for the
analysis of properties of different possible t-channel ex-
changes, which are considered usually as the most natural
mechanism for the considered processes at high energy
(the so-called peripheral collisions).

But sometimes another (equivalent) representation of
the amplitute can also be useful, namely the so-called
s-channel representation (fig. 2), with another arrange-
ment of the order of baryonic spinors. This representation
can be written as follows:

M = g1s(χ+
2 σyχ̃+

4 )(χ̃3σyσ · kχ1)

+g2s(χ+
2 σ · kσyχ̃+

4 )(χ̃3σyχ1)

+ig3s(χ+
2 σaσyχ̃+

4 )[χ̃3σy(σ × k̃)aχ1] , (4)

where g1s, g2s, g3s are the corresponding scalar collinear
amplitudes.

Using the standard Fierz transformations, the follow-
ing relations between these two sets of collinear ampli-
tudes, gi and gis, can be established:

g1 =
1
2
(g1s + g2s + g3s),

g2 =
1
2
(g1s + g2s − g3s),

g3 =
1
2
(2g1s + 2g2s + g3s) . (5)
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Note that the form presented in eq. (4) is especially useful
for the analysis of pp collisions, from the point of view of
possible s-channel mechanisms (dibaryon-like, or 6-quarks
intermediate states). Such a picture of central, i.e. essen-
tially nonperipheral mechanisms for pp collisions, is very
effective for the description of different processes such as

p + p → ∆ + N,

→ ∆ + ∆,

→ p + p + π0,

→ p + p + η, (6)

at intermediate energy region, τp ≤ 2 GeV.
It was found that [17,18] a limited number of spe-

cial quantum states for pp-channel, namely jp = 2+ and
1−, plays the most important role for such a s-channel
mechanism. Therefore, the s-channel representation of the
collinear matrix element, eq. (4), can be considered as the
most suitable one for description of such two-baryon ex-
citations. One can see that, the amplitude g1s describes
the triplet-singlet transition from initial pp system to fi-
nal p + B system, the amplitude g2s describes a singlet-
triplet transition, and the amplitude g3s the triplet-triplet
transition (with total-spin projection, equal to ±1).

3 Polarization phenomena

So, to find the 3 moduli of the complex amplitudes gi, i =
1, 2, 3, as well as the 2 relative phases, 5 different experi-
ments most be performed for any reaction p+p → B+P+p
in collinear conditions. In addition to the differential cross-
section with unpolarized baryons in initial and final states,
it is necessary to measure at least 4 different polariza-
tion observables. In the collinear regime, all possible one-
spin polarization observables must be equal to zero iden-
tically. This is dictated by the kinematics and the symme-
try properties and thus must be valid for any mechanism.
Therefore, the simplest polarization observables which are
nonzero in the collinear regime must be two-spin correla-
tions of baryon polarizations. The first natural step of the
complete experiment for p + p → B + P + p is the de-
termination of the moduli of all 3 collinear amplitudes gi,
eq. (3). The direct experimental approach is to measure
the coefficients of polarization transfer from initial to fi-
nal baryon. For example, the dependence of polarization
of produced baryon (3-vector of polarization P2, corre-
sponding to spinor χ2) on the polarization P1 of proton
beam can be parametrized in the following general form
(which is valid only for the collinear regime):

P2 = p1P1 + p2k(k · P1), (7)

where p1 and p2 are two real parameters, characterizing
the standard coefficients of polarization transfer:

Kx′
x = Ky′

y = p1 , Kz′
z = p1 + p2 , (8)

if z-axis is chosen along the unit vector k.

After some manipulations, the following expressions
can be found for these coefficients (in terms of collinear
amplitudes gi):

p1

(
dσ

dω

)
0

= |g1|2 − |g2|2 ,

p2

(
dσ

dω

)
0

= 2(|g2|2 − |g3|2) , (9)

where dω is the definite element of the phase space for the
3-particle production (in the collinear regime).

We use here a special normalization of the collinear
amplitudes, so the differential cross-section can be written
in the following form:(

dσ

dω

)
0

= |g1|2 + |g2|2 + 2|g3|2 . (10)

So, through the measurements of the following 3 observ-
ables, (dσ/dω)0, p1 and p2, we can determine the moduli
of all possible collinear amplitudes uniquely:

4|g1|2 = (1 + 3p1 + p2)
(

dσ

dω

)
0

,

4|g2|2 = (1 − p1 + p2)
(

dσ

dω

)
0

,

4|g3|2 = (1 − p1 − p2)
(

dσ

dω

)
0

. (11)

Note that the polarization transfer between another
pair of baryon, for instance between the target proton
(with spinor χ3, polarization vector P3) and the scat-
tered proton (spinor χ4, polarization vector P4), can be
parametrized as

P4 = p3P3 + p4k(k · P3). (12)

This does not contain new physical infumation however,
because the corresponding coefficients, i.e. the real pa-
rameters p3 and p4, are determined also by the moduli of
amplitudes gi:

p3

(
dσ

dω

)
0

= |g2|2 − |g1|2 ,

p4

(
dσ

dω

)
0

= 2(|g1|2 − |g3|2) . (13)

The following relations between two sets of parameters,
p1 and p2, and p3 and p4, can easily be established:

p3 = −p2 , p4 = 2p1 + p2 . (14)

Note that the reactions p + p → K + Λ(Σ) + N are
the most suitable ones measuring the transfer coefficients
from the proton beam to the produced hyperon, because
Λ(Σ) are self-analyzing particles, and such an experiment
has been carried out by DISTO collaboration [19–21].

To determine the relative phases of 3 complex ampli-
tudes gi, it is necessary to measure the spin correlation co-
efficients. The dependence of the differential cross-section
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on the polarizations P1 and P3 of colliding protons, which
is valid at the level of P -invariance for the collinear kine-
matics, can be described as

dσ

dω
(P1,P3)=

(
dσ

dω

)
0

(1+A1P1 ·P3+A2k·P1k·P3) , (15)

with the following expressions for the real coefficients A1

and A2, in terms of the t-channel collinear amplitudes gi:

A1 = 2Re[(g1 − g2)g∗3 ] ,
A1 + A2 = 2Re(g1g

∗
2) + |g3|2 . (16)

The sensitivity of these coefficients to the relative phases is
evident from eq. (16). The relation between the coefficients
Ai and the standard spin correlation coefficients Cab are
given as

Cxx = Cyy = A1 , Czz = A1 + A2 . (17)

But these observables are not sensitive to the signs of
relative phases, δ1 − δ2 and δ1 − δ3, because the phase
dependence of any T -even polarization observable has
cos(δ1 − δ2) and cos(δ1 − δ3) form. Therefore, the observ-
ables with sin(δ1 − δ2) and sin(δ1 − δ3) dependence must
be measured to have more or less a unique answer. This
means that also the T -odd polarization observables must
be measured.

But in the collinear regime the simplest T -odd polar-
ization observables for the process, p+p → B+P +p must
include the triple polarization correlations. As an exam-
ple, the dependence of the polarization P2 of the produced
baryon on the polarizations P1 and P3 (for colliding pro-
tons) can be parametrized in the following general form:

P2 = t1P1 × P3 + t2k(k · P1 × P3) + t3(k × P1k · P3

+k × P3k · P1) , (18)

where ti are real independent coefficients which are deter-
mined by the imaginary parts of the definite combinations
of the collinear scalar amplitudes

t1
dσ

dω
= 2Im(g1g

∗
3) ,

t2
dσ

dω
= 2Im[g1(g2 − g3)∗] ,

t3
dσ

dω
= 2Im(g2g

∗
3) , (19)

in which T -odd nature is manifest.
Note that all other possible triple correlations of the

baryonic polarizations can be expressed as definite linear
combinations of parameters ti because, generally, there
are only 3 independent T -odd products of the collinear
amplitudes for the considered processes.

Before concluding our discussion of possible polariza-
tion phenomena in collinear NN interactions, we would
like to note that the coefficients A1 and A2 can be ex-
pressed also in terms of the s-channel collinear amplitudes

gis, i = 1, 2, 3:

A1

(
dσ

dω

)
0

= −|g1s|2 + |g2s|2 ,

A2

(
dσ

dω

)
0

= −2|g2s|2 + 2|g3s|2 , (20)

Note that there are no interference contributions here. But
such interference terms, Regisg

∗
js, i, j = 1, 2, 3, will be

present in coefficients p1 and p2(p3 and p4), which define
the spin transfer coefficients.

4 Conclusions

We would like to summarize here the main results of our
work:
– We established the spin structure of collinear matrix

element for a wide class of interesting pseudoscalar me-
son production processes (covering a wide spectrum
from π meson to ηc or D) in proton-proton collisions,
p + p → B + P + p, in terms of 3 complex amplitudes.

– We performed the general analysis of polarization phe-
nonena in the collinear regime, and established the
content of the complete experiment for the full recon-
struction of the spin structure.
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